
Bern University
of Applied Sciences

Embedded Development with Rust
Chaostreff Bern
2.10.2025
Pascal Mainini

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

Outline
I Introduction

I Bare Metal
no_std Rust
Bare Metal M4

I Rust Embedded
Overview
Runtime + Micro-Architecture
PAC Crates
HAL

I RTOS

I Async Rust
RTIC
Embassy

I Further Resources

I Bibliography

Introduction

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

Embedded Development
with Rust

Introduction

Bare Metal

no_std Rust

Bare Metal M4

Rust Embedded

Overview

Runtime + Micro-Architecture

PAC Crates

HAL

RTOS

Async Rust

RTIC

Embassy

Further Resources

Bibliography

Pascal Mainini
e-mail : pascal.mainini@bfh.ch

Computer scientist

Focus on security, cryptography and hardware

Tenure track at BFH

Member of the institute ICE (cybersecurity and engineering)

Long and broad industry experience

Teaching embedded Rust since 2021

I do not like being recorded! Please ask me before making any recordings or taking pictures…

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 4

Embedded Development
with Rust

Introduction

Bare Metal

no_std Rust

Bare Metal M4

Rust Embedded

Overview

Runtime + Micro-Architecture

PAC Crates

HAL

RTOS

Async Rust

RTIC

Embassy

Further Resources

Bibliography

Goals Of This Talk

Give an overview of the embedded Rust ecosystem.

Show helpful abstractions: getting from bare metal to realtime OS.

Provide a starting point and resources for embedded Rust.

…Clearly, this will be a fast and bumpy ride – fasten your seat-belts!

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 5

Embedded Development
with Rust

Introduction

Bare Metal

no_std Rust

Bare Metal M4

Rust Embedded

Overview

Runtime + Micro-Architecture

PAC Crates

HAL

RTOS

Async Rust

RTIC

Embassy

Further Resources

Bibliography

Embedded Systems

In the context of this talk, we speak of using Rust on embedded systems.

Typically, this encompasses all sorts of Micro-Controller Units (MCUs).

These are generally small, integrated systems consisting of a CPU, RAM and peripherals.

This imposes additional difficulties: limited resources, (specifically CPU and RAM).

Examples presented are destined for ARM Cortex-M4 MCUs, specifically Nordic’s
nRF52840. [1]
Single core, 64 MHz, 1 MiB flash / 256 KiB RAM

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 6

Embedded Development
with Rust

Introduction

Bare Metal

no_std Rust

Bare Metal M4

Rust Embedded

Overview

Runtime + Micro-Architecture

PAC Crates

HAL

RTOS

Async Rust

RTIC

Embassy

Further Resources

Bibliography

Cross-Compilation

Typically, development cannot be done on the MCU itself, we need to cross-compile. This requires a
toolchain (compiler, linker, …) for the target architecture, e.g. Armv7E-M for the nRF52840.

For supported architectures, in Rust simply the appropriate target (“thumbv7em-none-eabihf”) can
be installed using rustup:1

rustup target install thumbv7em-none-eabihf

It is also recommended to install “cargo-binutils”, which provides useful shortcuts to the correct
per-architecture binutils version:

rustup component add llvm-tools-preview # required by cargo-binutils
cargo install cargo-binutils

� Targets and components are installed per toolchain (e.g. nightly)!
Use “--toolchain” to install for a different toolchain, e.g.

rustup target install --toolchain nightly thumbv7em-none-eabihf

1See [2] for a list.

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 7

Bare Metal

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

Embedded Development
with Rust

Introduction

Bare Metal

no_std Rust

Bare Metal M4

Rust Embedded

Overview

Runtime + Micro-Architecture

PAC Crates

HAL

RTOS

Async Rust

RTIC

Embassy

Further Resources

Bibliography

no_std Rust
Due to the constraints of embedded systems, they normally run in a no_std environment:

Linked against the core crate instead of std

Typically used for OS kernels, bootloaders and firmware.

No OS support for things like memory allocation, multi-threading, CLI arguments etc.
In particular, no support for dynamic data structures like vec.2

The executable runtime must be set up by the executable itself.

Many crates do not work.

At the very basic level, this requires doing two things:
1. Using the appropriate attributes to designate code as no_std:

#![no_main] // no standard main requiring CLI arguments etc.
#![no_std] // only link against core

2. Provide a panic handler (called on any panic, e.g. using the panic!() macro etc.):
#[panic_handler]
fn panic(_info: &PanicInfo) -> ! {

loop {}
}

2See [3] for a potential solution.

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 9

Embedded Development
with Rust

Introduction

Bare Metal

no_std Rust

Bare Metal M4

Rust Embedded

Overview

Runtime + Micro-Architecture

PAC Crates

HAL

RTOS

Async Rust

RTIC

Embassy

Further Resources

Bibliography

Cortex-M4 Initialization

When programming bare metal, no OS and no runtime / standard library is available; we need to set
up everything ourselves.

For the Cortex-M4, the following steps are required:

1. Set up the vector table (at address
0x00000000):

Set initial address of the stack pointer.
Set the address of the reset handler.
Set addresses for other handlers (NMI, hard
fault, …).

2. Initialize memory (static and global variables):

Set the .bss section to zero.

Initialize values in the .data section.

3. Jump to application code, e.g. “main()”! Figure: Cortex-M4 Vector Table [4]

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 10

Embedded Development
with Rust

Introduction

Bare Metal

no_std Rust

Bare Metal M4

Rust Embedded

Overview

Runtime + Micro-Architecture

PAC Crates

HAL

RTOS

Async Rust

RTIC

Embassy

Further Resources

Bibliography

Example: bare-metal-m4

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 11

Rust Embedded

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

Embedded Development
with Rust

Introduction

Bare Metal

no_std Rust

Bare Metal M4

Rust Embedded

Overview

Runtime + Micro-Architecture

PAC Crates

HAL

RTOS

Async Rust

RTIC

Embassy

Further Resources

Bibliography

Rust Embedded Crates

Embedded crates provide library support for different MCUs. We distinguish the following
kinds of crates:

Micro-architecture crates: Access to CPU functionality, registers and common
peripherals. Example: cortex-m, [5].

Peripheral access crates (PAC):Wrappers for register names etc. of a specific MCU.
E.g. nrf52840-pac, [6].

HAL crates: APIs for generic peripherals like timers, serial ports, GPIOs, etc. Typically
implementing traits from embedded_hal ([7]). Example: nrf52840-hal, [8].

Board support crates (BSP): Crates for a specific board with pre-configured devices
(e.g. LEDs/buttons/sensors). Example: stm32f3-discovery, [9].

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 13

Embedded Development
with Rust

Introduction

Bare Metal

no_std Rust

Bare Metal M4

Rust Embedded

Overview

Runtime + Micro-Architecture

PAC Crates

HAL

RTOS

Async Rust

RTIC

Embassy

Further Resources

Bibliography

Rust Embedded Crates
The following figure shows the different kinds of embedded crates and their level of
abstraction in relation to MCU functionality:

Figure: Types of Rust Embedded Crates [10]

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 14

Embedded Development
with Rust

Introduction

Bare Metal

no_std Rust

Bare Metal M4

Rust Embedded

Overview

Runtime + Micro-Architecture

PAC Crates

HAL

RTOS

Async Rust

RTIC

Embassy

Further Resources

Bibliography

Runtime: The cortex-m-rt Crate

The crate cortex-m-rt ([11]) provides code for startup and initialization of the runtime, as
we did before. Most importantly:

Initialization of the vector table (and stack pointer)

Initialization of static variables

Hooks for exception- and interrupt handlers

It drastically reduces boiler plate required:
#![no_std]
#![no_main]

use panic_halt as _; // a second crate providing #[panic_handler]

#[cortex_m_rt::entry] // all the magic happens here
fn main() -> ! {

loop {} // ..
}

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 15

Embedded Development
with Rust

Introduction

Bare Metal

no_std Rust

Bare Metal M4

Rust Embedded

Overview

Runtime + Micro-Architecture

PAC Crates

HAL

RTOS

Async Rust

RTIC

Embassy

Further Resources

Bibliography

Micro-architecture Crate: cortex-m

The crate cortex-m ([5]) provides access to common peripherals of all ARM Cortex-M CPUs,
like e.g. the system timer (SysTick):

Figure: Description of System Timer Registers [4]

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 16

Embedded Development
with Rust

Introduction

Bare Metal

no_std Rust

Bare Metal M4

Rust Embedded

Overview

Runtime + Micro-Architecture

PAC Crates

HAL

RTOS

Async Rust

RTIC

Embassy

Further Resources

Bibliography

Micro-architecture Crate: SysTick Peripheral

Example: Using the common Cortex-M system timer peripheral.

use cortex_m::peripheral::{syst::SystClkSource, Peripherals};

// Singleton
let p = Peripherals::take().unwrap();

// Get SysTick and have it use the system/core clock
let mut systick = p.SYST;
systick.set_clock_source(SystClkSource::Core);

// Divide the clock by 1 million and start counting
systick.set_reload(1_000_000);
systick.clear_current();
systick.enable_counter();

// ...

// Use it as delay
while !systick.has_wrapped() {}

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 17

Embedded Development
with Rust

Introduction

Bare Metal

no_std Rust

Bare Metal M4

Rust Embedded

Overview

Runtime + Micro-Architecture

PAC Crates

HAL

RTOS

Async Rust

RTIC

Embassy

Further Resources

Bibliography

PAC: Accessing Peripherals

PAC crates are often automatically generated from SVD files using svd2rust [12].3 Such
PACs contain a struct Peripherals with a field for every peripheral available on the specific
MCU, like e.g. GPIO, PWM, TIMER etc.

Every peripheral in turn is also a struct, providing access to a RegisterBlock struct
containing the registers of that peripheral.

For example, the nRF52840 GPIO P1 peripheral:
let p = nrf52840_pac::Peripherals::take().unwrap();

let gpio = p.P1; // nrf52840_pac::p1::RegisterBlock
gpio.dir.// ... -> DIR register (configuration)
gpio.out.// ... -> OUT register (writing)

3CMSIS-SVD is an XML format used by many vendors to describe peripherals of their MCUs.

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 18

Embedded Development
with Rust

Introduction

Bare Metal

no_std Rust

Bare Metal M4

Rust Embedded

Overview

Runtime + Micro-Architecture

PAC Crates

HAL

RTOS

Async Rust

RTIC

Embassy

Further Resources

Bibliography

Example: temperature

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 19

Embedded Development
with Rust

Introduction

Bare Metal

no_std Rust

Bare Metal M4

Rust Embedded

Overview

Runtime + Micro-Architecture

PAC Crates

HAL

RTOS

Async Rust

RTIC

Embassy

Further Resources

Bibliography

The Embedded HAL

The main objective of a Hardware Abstraction Layer (HAL) is, as the name implies, a
uniform way to access hardware.4

For embedded Rust, such a HAL is provided by the embedded-hal crate, [7]. It provides
traits to access common peripherals:

GPIOs: embedded_hal::digital::InputPin,
embedded_hal::digital::OutputPin
Delays, I2C, SPI, PWM

Additional companion crates provide more HW support or other execution models. Examples:
embedded-io (Serial/UART, [13]), embedded-hal-async (non-blocking, [14]).

Device-specific HAL crates consume peripherals from PAC crates and return embedded-hal
implementations.

Example: Crate nrf52840-hal provides the HAL implementation for the nRF52840.

4On the downside, HW-specific / potentially more efficient access is not possible.

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 20

Embedded Development
with Rust

Introduction

Bare Metal

no_std Rust

Bare Metal M4

Rust Embedded

Overview

Runtime + Micro-Architecture

PAC Crates

HAL

RTOS

Async Rust

RTIC

Embassy

Further Resources

Bibliography

Type Safe Peripherals
Thanks to Rust’s type system and ownership concept, HW can be treated as data and
misconfiguration is prevented at compile time!

let mut led = port1.p1_01;
// led is type P1_01<Disconnected>

led.set_high().unwrap();
// error: method cannot be called on `P1_01<Disconnected>`
// due to unsatisfied trait bounds

let mut led = port1.p1_01.into_push_pull_output(Level::Low);
// now led is type P1_01<Output<PushPull>>

led.set_high().unwrap();
// ok!

Implementation of embedded_hal::digital::v2::OutputPin in [15]:

impl<MODE> OutputPin for Pin<Output<MODE>> {
fn set_high(&mut self) -> Result<(), Self::Error> {

// ... set pin high. note: requires mutable ref!
}

}

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 21

Embedded Development
with Rust

Introduction

Bare Metal

no_std Rust

Bare Metal M4

Rust Embedded

Overview

Runtime + Micro-Architecture

PAC Crates

HAL

RTOS

Async Rust

RTIC

Embassy

Further Resources

Bibliography

Example: systick-hal

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 22

RTOS

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

Embedded Development
with Rust

Introduction

Bare Metal

no_std Rust

Bare Metal M4

Rust Embedded

Overview

Runtime + Micro-Architecture

PAC Crates

HAL

RTOS

Async Rust

RTIC

Embassy

Further Resources

Bibliography

RTOS (Increasing Abstraction)

For simple applications, bare-metal programming might be enough, but embedded systems
become increasingly complex. This applies in particular to IoT devices, but is also true for
other systems.

With advanced peripherals and software stacks, managing resources and concurrency, while
meeting strict timing requirements is a difficult task. Examples include:

Networking, e.g. Ethernet/WiFi, BLE (Bluetooth), IEEE 802.15.4, LoRa, …

USB device or host stack

Network stacks and protocols, e.g. TCP/IP, ZigBee, LoRaWAN, …

In general, applications with such requirements will use an embedded-, or more specifically a
Real-Time Operating System (RTOS), which provides the required functionality and eases
development.

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 24

Embedded Development
with Rust

Introduction

Bare Metal

no_std Rust

Bare Metal M4

Rust Embedded

Overview

Runtime + Micro-Architecture

PAC Crates

HAL

RTOS

Async Rust

RTIC

Embassy

Further Resources

Bibliography

RTOS Examples

There is a large number of open source and proprietary RTOS available today (see e.g. [16]).
Some examples include:

Apache Mynewt: ASF, NimBLE stack, Apache license

Contiki: BSD license

FreeRTOS: Amazon, large user base (e.g. used in ESP-IDF), MIT license

Mbed OS: developed by ARM, Apache license

QNX: Blackberry, proprietary

RIOT: Academia, RUST friendly, LGPL License

ThreadX: Eclipse Foundation (formerly Microsoft), MIT license

VxWorks: Wind River (Intel), e.g. used in Mars rovers, proprietary

Zephyr: Hosted by the Linux Foundation, large board support, Apache license

Due to the increasing number of IoT appliations, interest of cloud providers in RTOS has grown:
FreeRTOS (AWS), ThreadX (Azure) and Zephyr (Google, Nordic and others).

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 25

Embedded Development
with Rust

Introduction

Bare Metal

no_std Rust

Bare Metal M4

Rust Embedded

Overview

Runtime + Micro-Architecture

PAC Crates

HAL

RTOS

Async Rust

RTIC

Embassy

Further Resources

Bibliography

Rust RTOS

Nowadays, the majority of RTOS is written in C and assembly language, only few are written
in Rust so far. This might change in the future due to interesting language properties, like
e.g. memory safety and safe concurrency.

Rust RTOS examples:5

Ariel: Built on top of Embassy and other projects, [19]

Bern: Master’s thesis at BFH, [20]

Drone: Targets hard real-time applications, [21, 22]

Hubris: By 0xide computers, for their HW, [23]

Tock: For running concurrent, distrustful applications, [24, 25]

Xous: OS for the Betrusted project, [26, 27, 28]

Besides those, there are also the embedded frameworks RTIC and Embassy, [29, 30]. See
also [31] for more Rust RTOS.

5� For a general-purpose OS in Rust, have a look at Redox [17]. A comprehensive introduction to OS
development with Rust is given in [18].

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 26

Embedded Development
with Rust

Introduction

Bare Metal

no_std Rust

Bare Metal M4

Rust Embedded

Overview

Runtime + Micro-Architecture

PAC Crates

HAL

RTOS

Async Rust

RTIC

Embassy

Further Resources

Bibliography

Hardware Support and Abstraction

Supported hardware depends on the RTOS. Some may support only a few architectures or
even just a single one, while others support many. In general, Cortex-M MCUs, and
increasingly also the RISC-V architecture, are well supported.

Depending on the way an RTOS abstracts hardware, support for different kinds of peripherals
varies:

No abstraction: The RTOS relies on Rust Embedded abstractions, i.e. on
embedded-hal, PACs etc.

Vendor abstraction: Abstractions provided by the vendor (e.g. CMSIS-SVD) are used
for accessing HW. Example: Drone.

Custom HAL: OS-specific implementation of HW drivers. Example: Tock.

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 27

Embedded Development
with Rust

Introduction

Bare Metal

no_std Rust

Bare Metal M4

Rust Embedded

Overview

Runtime + Micro-Architecture

PAC Crates

HAL

RTOS

Async Rust

RTIC

Embassy

Further Resources

Bibliography

Rust on Non-Rust RTOS

Besides bare metal Rust and pure Rust RTOS, it is also possible to write (parts of) embedded
applications for non-Rust RTOS. Some examples:

esp-idf-hal: Espressif MCUs have good Rust support by vendor and community. A HAL
interfacing with ESP-IDF (FreeRTOS) is available, also providing std support.
See [32, 33] for details.

FreeRTOS-rust: The main() function can be written in Rust and the global memory
allocator can be used. [34]

RIOT: For certain platforms, RIOT provides direct support for Rust. [35]
Rust on Zephyr RTOS: Provides bindings for all syscalls, safe wrappers for some Zephyr
APIs and also allocator support. [36]

Writing Rust applications for non-rust RTOS may be an interesting path for integration in
existing environments and benefitting from additional guarantees in the business logic.

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 28

Async Rust

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

Embedded Development
with Rust

Introduction

Bare Metal

no_std Rust

Bare Metal M4

Rust Embedded

Overview

Runtime + Micro-Architecture

PAC Crates

HAL

RTOS

Async Rust

RTIC

Embassy

Further Resources

Bibliography

Runtimes

While futures and the async/await keywords are part of the Rust language, the executor is
not. It handles running and awaiting tasks and is responsible for the in-process scheduling.

To run async Rust programs, an async runtime with an executor is required. By separating it
from the language, different implementations for different targets are possible. Well-known
examples are:

Tokio: De-facto standard runtime. [37]
Smol: Minimalistic runtime, composed of various other crates. [38]
RTIC: Small, HW-based executor. [39]

Embassy: Runtime for embedded systems. [30]

Tokio and Embassy are both small ecosystems on their own. Tokio e.g. brings a whole stack
of client/server libraries and Embassy has its own HAL implementations.

On the potential downside, this leads to a large number of crates depending on a specific runtime
– replacing it with a different one is difficult.

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 30

Embedded Development
with Rust

Introduction

Bare Metal

no_std Rust

Bare Metal M4

Rust Embedded

Overview

Runtime + Micro-Architecture

PAC Crates

HAL

RTOS

Async Rust

RTIC

Embassy

Further Resources

Bibliography

RTIC: Real-Time Interrupt-driven Concurrency

RTIC (Real-Time Interrupt-driven Concurrency, [39]) is a framework for resource sharing
and interrupt handling:

Macro-based framework, not a full-fledged RTOS

Supports all Cortex-M MCUs

Guarantees deadlock-free execution at compile time
Most of the scheduling is done in hardware using interrupts and interrupt priorities
Supports preemptive multitasking
Has a low time- and memory overhead

“From RTIC’s developers point of view; RTIC is a hardware accelerated RTOS that utilizes the
hardware such as the NVIC on Cortex-M MCUs, CLIC on RISC-V etc. to perform scheduling, rather
than the more classical software kernel.”

� Refer to the RTIC book ([29]) for extensive documentation!

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 31

Embedded Development
with Rust

Introduction

Bare Metal

no_std Rust

Bare Metal M4

Rust Embedded

Overview

Runtime + Micro-Architecture

PAC Crates

HAL

RTOS

Async Rust

RTIC

Embassy

Further Resources

Bibliography

Example: rtic-monotonic

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 32

Embedded Development
with Rust

Introduction

Bare Metal

no_std Rust

Bare Metal M4

Rust Embedded

Overview

Runtime + Micro-Architecture

PAC Crates

HAL

RTOS

Async Rust

RTIC

Embassy

Further Resources

Bibliography

Embassy
Embassy is a runtime for embedded systems:

no_std / no allocator needed
Integrated timer for sleeping/delays
No busy loop, sleeping with WFI

Besides the executor, different features and crates are available:

HALs for ESP32, Nordic, RP2040/RP2350 and STM32 MCUs (other HALs possible)
Some implement blocking traits from embedded HAL ([7]) also!
Integration with Nordic SoftDevice for Bluetooth
Networking- and USB-stack, bootloader

Comparison RTIC vs. Embassy:

Both provide an async Rust executor
RTIC does scheduling in HW using interrupts
RTIC does not provide any HALs
Parts of both projects may be combined!

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 33

Embedded Development
with Rust

Introduction

Bare Metal

no_std Rust

Bare Metal M4

Rust Embedded

Overview

Runtime + Micro-Architecture

PAC Crates

HAL

RTOS

Async Rust

RTIC

Embassy

Further Resources

Bibliography

Example: embassy-blink

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 34

Further Resources

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

Embedded Development
with Rust

Introduction

Bare Metal

no_std Rust

Bare Metal M4

Rust Embedded

Overview

Runtime + Micro-Architecture

PAC Crates

HAL

RTOS

Async Rust

RTIC

Embassy

Further Resources

Bibliography

Further Resources

Due to limited time, we have only scratched the surface and important topics could not have
been presented. The following is a small selection of resources to support your potential
further exploration of Embedded Rust:

Rust on Embedded Devices Working Group [40]: Home of the efforts around Rust on
embedded devices.

The Embedded Rust Book [41]: “Classic” Rust book for embedded Rust – a good
introduction.

Awesome Embedded Rust [42]: Curated list of resources for embedded and low-level
development in the Rust programming language.

Feel free to chat with me afterwards or contact me by mail: pascal.mainini@bfh.ch!

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 36

Embedded Development
with Rust

Introduction

Bare Metal

no_std Rust

Bare Metal M4

Rust Embedded

Overview

Runtime + Micro-Architecture

PAC Crates

HAL

RTOS

Async Rust

RTIC

Embassy

Further Resources

Bibliography

Discussion, Q&A

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 37

Bibliography

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

Embedded Development
with Rust

Introduction

Bare Metal

no_std Rust

Bare Metal M4

Rust Embedded

Overview

Runtime + Micro-Architecture

PAC Crates

HAL

RTOS

Async Rust

RTIC

Embassy

Further Resources

Bibliography

Bibliography I
[1] “Nordic Semiconductor Homepage, nRF52840.”

https://www.nordicsemi.com/Products/Low-power-short-range-wireless/nRF52840.

[2] “The rustc Book, Platform Support.”
https://doc.rust-lang.org/stable/rustc/platform-support.html.

[3] “crates.io, heapless.”
https://crates.io/crates/heapless.

[4] “Arm DUI 0553, Cortex-M4 Devices, Generic User Guide.”
https://developer.arm.com/documentation/dui0553/latest/.

[5] “crates.io, cortex-m.”
https://crates.io/crates/cortex-m.

[6] “crates.io, nrf52840-pac.”
https://crates.io/crates/nrf52840-pac.

[7] “crates.io, embedded-hal.”
https://crates.io/crates/embedded-hal.

[8] “crates.io, nrf52840-hal.”
https://crates.io/crates/nrf52840-hal.

[9] “crates.io, stm32f3-discovery.”
https://crates.io/crates/stm32f3-discovery.

[10] “The Embedded Rust Book, Memory Mapped Registers.”
https://docs.rust-embedded.org/book/start/registers.html.

[11] “crates.io, cortex-m-rt.”
https://crates.io/crates/cortex-m-rt.

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 39

https://www.nordicsemi.com/Products/Low-power-short-range-wireless/nRF52840
https://doc.rust-lang.org/stable/rustc/platform-support.html
https://crates.io/crates/heapless
https://developer.arm.com/documentation/dui0553/latest/
https://crates.io/crates/cortex-m
https://crates.io/crates/nrf52840-pac
https://crates.io/crates/embedded-hal
https://crates.io/crates/nrf52840-hal
https://crates.io/crates/stm32f3-discovery
https://docs.rust-embedded.org/book/start/registers.html
https://crates.io/crates/cortex-m-rt

Embedded Development
with Rust

Introduction

Bare Metal

no_std Rust

Bare Metal M4

Rust Embedded

Overview

Runtime + Micro-Architecture

PAC Crates

HAL

RTOS

Async Rust

RTIC

Embassy

Further Resources

Bibliography

Bibliography II

[12] “crates.io, svd2rust.”
https://crates.io/crates/svd2rust.

[13] “crates.io, embedded-io.”
https://crates.io/crates/embedded-io.

[14] “crates.io, embedded-hal-async.”
https://crates.io/crates/embedded-hal-async.

[15] “GitHub.com, nrf-rs/nrf-hal: nrf-hal-common/src/gpio.rs (v0.15.0).”
https://github.com/nrf-rs/nrf-hal/blob/v0.15.0/nrf-hal-common/src/gpio.rs#L293.

[16] “Wikipedia, Comparison of real-time operating systems.”
https://en.wikipedia.org/wiki/Comparison_of_real-time_operating_systems.

[17] “Redox – Your Next(Gen) OS.”
https://www.redox-os.org/.

[18] P. Oppermann, “Writing an OS in Rust.”
https://os.phil-opp.com/.

[19] “GitHub.com, ariel-os/ariel-os: Ariel OS is a library operating system for secure, memory-safe, low-power Internet of Things, written in Rust.”
https://github.com/ariel-os/ariel-os.

[20] “Bern RTOS: A real-time operating system for microcontrollers written in Rust.”
https://bern-rtos.org/.

[21] “Drone – An Embedded Operating System for writing real-time applications in Rust.”
https://www.drone-os.com/.

[22] “The Drone Embedded Operating System.”
https://book.drone-os.com/.

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 40

https://crates.io/crates/svd2rust
https://crates.io/crates/embedded-io
https://crates.io/crates/embedded-hal-async
https://github.com/nrf-rs/nrf-hal/blob/v0.15.0/nrf-hal-common/src/gpio.rs#L293
https://en.wikipedia.org/wiki/Comparison_of_real-time_operating_systems
https://www.redox-os.org/
https://os.phil-opp.com/
https://github.com/ariel-os/ariel-os
https://bern-rtos.org/
https://www.drone-os.com/
https://book.drone-os.com/

Embedded Development
with Rust

Introduction

Bare Metal

no_std Rust

Bare Metal M4

Rust Embedded

Overview

Runtime + Micro-Architecture

PAC Crates

HAL

RTOS

Async Rust

RTIC

Embassy

Further Resources

Bibliography

Bibliography III

[23] “Hubris, A small open-source operating system for deeply-embedded computer systems.”
https://oxidecomputer.github.io/hubris/.

[24] “Tock Embedded Operating System.”
https://www.tockos.org/.

[25] “Tock Tutorial.”
https://book.tockos.org/.

[26] “betrusted.io | A security enclave for humans.”
https://betrusted.io/.

[27] “Announcing Xous: the Betrusted Operating System.”
https://xobs.io/announcing-xous-the-betrusted-operating-system/.

[28] “GitHub.com, betrusted-io/xous-core: The Xous microkernel.”
https://github.com/betrusted-io/xous-core/.

[29] “RTIC Book.”
https://rtic.rs/.

[30] “Embassy.”
https://embassy.dev/.

[31] “Are We RTOS Yet?.”
https://arewertosyet.com/.

[32] “GitHub.com, esp-rs: Rust on Espressif microcontrollers.”
https://github.com/esp-rs.

[33] “GitHub.com, awesome-esp-rust: Awesome ESP Rust.”
https://github.com/esp-rs/awesome-esp-rust.

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 41

https://oxidecomputer.github.io/hubris/
https://www.tockos.org/
https://book.tockos.org/
https://betrusted.io/
https://xobs.io/announcing-xous-the-betrusted-operating-system/
https://github.com/betrusted-io/xous-core/
https://rtic.rs/
https://embassy.dev/
https://arewertosyet.com/
https://github.com/esp-rs
https://github.com/esp-rs/awesome-esp-rust

Embedded Development
with Rust

Introduction

Bare Metal

no_std Rust

Bare Metal M4

Rust Embedded

Overview

Runtime + Micro-Architecture

PAC Crates

HAL

RTOS

Async Rust

RTIC

Embassy

Further Resources

Bibliography

Bibliography IV

[34] “GitHub.com, lobaro/FreeRTOS-rust: Rust crate for FreeRTOS.”
https://github.com/lobaro/FreeRTOS-rust.

[35] “Using Rust in RIOT.”
https://doc.riot-os.org/using-rust.html.

[36] “GitHub.com, tylerwhall/zephyr-rust: API bindings, libstd, and Cargo integration for running Rust applications on a Zephyr kernel.”
https://github.com/tylerwhall/zephyr-rust.

[37] “Tokio - An asynchronous Rust runtime.”
https://tokio.rs/.

[38] “GitHub.com, smol-rs/smol: A small and fast async runtime for Rust.”
https://github.com/smol-rs/smol.

[39] “crates.io, rtic.”
https://crates.io/crates/rtic.

[40] “Rust Embedded: Resources for Rust programming on embedded devices.”
https://rust-embedded.org/.

[41] “The Embedded Rust Book.”
https://docs.rust-embedded.org/book/.

[42] “GitHub.com, rust-embedded/awesome-embedded-rust: Curated list of resources for Embedded and Low-level development in the Rust programming language.”
https://github.com/rust-embedded/awesome-embedded-rust/.

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 42

https://github.com/lobaro/FreeRTOS-rust
https://doc.riot-os.org/using-rust.html
https://github.com/tylerwhall/zephyr-rust
https://tokio.rs/
https://github.com/smol-rs/smol
https://crates.io/crates/rtic
https://rust-embedded.org/
https://docs.rust-embedded.org/book/
https://github.com/rust-embedded/awesome-embedded-rust/

	Introduction
	Bare Metal
	no_std Rust
	Bare Metal M4

	Rust Embedded
	Overview
	Runtime + Micro-Architecture
	PAC Crates
	HAL

	RTOS
	Async Rust
	RTIC
	Embassy

	Further Resources
	Bibliography

